Note 1 : Recommended statistics for this type of classification highlighted in aqua
Note 2 : The recommender system assumes that the input is the result of classification over the whole data rather than just a part of it. If the confusion matrix is the result of test data classification, the recommendation is not valid.
| Actual | Predict
|
| Class | 0 | 1 | 2 | Description |
| ACC | 1.0 | 0.97368 | 0.97368 | Accuracy |
| AGF | 1.0 | 0.95711 | 0.98556 | Adjusted F-score |
| AGM | 1.0 | 0.97989 | 0.97521 | Adjusted geometric mean |
| AM | 0 | -1 | 1 | Difference between automatic and manual classification |
| AUC | 1.0 | 0.96875 | 0.98276 | Area under the ROC curve |
| AUCI | Excellent | Excellent | Excellent | AUC value interpretation |
| AUPR | 1.0 | 0.96875 | 0.95 | Area under the PR curve |
| BB | 1.0 | 0.9375 | 0.9 | Braun-Blanquet similarity |
| BCD | 0.0 | 0.01316 | 0.01316 | Bray-Curtis dissimilarity |
| BM | 1.0 | 0.9375 | 0.96552 | Informedness or bookmaker informedness |
| CEN | 0 | 0.07991 | 0.11179 | Confusion entropy |
| DOR | None | None | None | Diagnostic odds ratio |
| DP | None | None | None | Discriminant power |
| DPI | None | None | None | Discriminant power interpretation |
| ERR | 0.0 | 0.02632 | 0.02632 | Error rate |
| F0.5 | 1.0 | 0.98684 | 0.91837 | F0.5 score |
| F1 | 1.0 | 0.96774 | 0.94737 | F1 score - harmonic mean of precision and sensitivity |
| F2 | 1.0 | 0.94937 | 0.97826 | F2 score |
| FDR | 0.0 | 0.0 | 0.1 | False discovery rate |
| FN | 0 | 1 | 0 | False negative/miss/type 2 error |
| FNR | 0.0 | 0.0625 | 0.0 | Miss rate or false negative rate |
| FOR | 0.0 | 0.04348 | 0.0 | False omission rate |
| FP | 0 | 0 | 1 | False positive/type 1 error/false alarm |
| FPR | 0.0 | 0.0 | 0.03448 | Fall-out or false positive rate |
| G | 1.0 | 0.96825 | 0.94868 | G-measure geometric mean of precision and sensitivity |
| GI | 1.0 | 0.9375 | 0.96552 | Gini index |
| GM | 1.0 | 0.96825 | 0.98261 | G-mean geometric mean of specificity and sensitivity |
| HD | 0 | 1 | 1 | Hamming distance |
| IBA | 1.0 | 0.87891 | 0.99881 | Index of balanced accuracy |
| ICSI | 1.0 | 0.9375 | 0.9 | Individual classification success index |
| IS | 1.54749 | 1.24793 | 1.926 | Information score |
| J | 1.0 | 0.9375 | 0.9 | Jaccard index |
| LS | 2.92308 | 2.375 | 3.8 | Lift score |
| MCC | 1.0 | 0.94696 | 0.93218 | Matthews correlation coefficient |
| MCCI | Very Strong | Very Strong | Very Strong | Matthews correlation coefficient interpretation |
| MCEN | 0 | 0.125 | 0.1661 | Modified confusion entropy |
| MK | 1.0 | 0.95652 | 0.9 | Markedness |
| N | 25 | 22 | 29 | Condition negative |
| NLR | 0.0 | 0.0625 | 0.0 | Negative likelihood ratio |
| NLRI | Good | Good | Good | Negative likelihood ratio interpretation |
| NPV | 1.0 | 0.95652 | 1.0 | Negative predictive value |
| OC | 1.0 | 1.0 | 1.0 | Overlap coefficient |
| OOC | 1.0 | 0.96825 | 0.94868 | Otsuka-Ochiai coefficient |
| OP | 1.0 | 0.94143 | 0.95614 | Optimized precision |
| P | 13 | 16 | 9 | Condition positive or support |
| PLR | None | None | 29.0 | Positive likelihood ratio |
| PLRI | None | None | Good | Positive likelihood ratio interpretation |
| POP | 38 | 38 | 38 | Population |
| PPV | 1.0 | 1.0 | 0.9 | Precision or positive predictive value |
| PRE | 0.34211 | 0.42105 | 0.23684 | Prevalence |
| Q | None | None | None | Yule Q - coefficient of colligation |
| QI | None | None | None | Yule Q interpretation |
| RACC | 0.11704 | 0.1662 | 0.06233 | Random accuracy |
| RACCU | 0.11704 | 0.16638 | 0.0625 | Random accuracy unbiased |
| TN | 25 | 22 | 28 | True negative/correct rejection |
| TNR | 1.0 | 1.0 | 0.96552 | Specificity or true negative rate |
| TON | 25 | 23 | 28 | Test outcome negative |
| TOP | 13 | 15 | 10 | Test outcome positive |
| TP | 13 | 15 | 9 | True positive/hit |
| TPR | 1.0 | 0.9375 | 1.0 | Sensitivity, recall, hit rate, or true positive rate |
| Y | 1.0 | 0.9375 | 0.96552 | Youden index |
| dInd | 0.0 | 0.0625 | 0.03448 | Distance index |
| sInd | 1.0 | 0.95581 | 0.97562 | Similarity index |
Generated By PyCM Version 4.0