Purpose
  To compute unitary matrices Q1 and Q2 for a complex 2-by-2 regular
  pencil aA - bB with A, B upper triangular, such that
  Q2' (aA - bB) Q1 is still upper triangular but the eigenvalues are
  in reversed order. The matrices Q1 and Q2 are represented by
       (  CO1  SI1  )       (  CO2  SI2  )
  Q1 = (            ), Q2 = (            ).
       ( -SI1' CO1  )       ( -SI2' CO2  )
  The notation M' denotes the conjugate transpose of the matrix M.
Specification
      SUBROUTINE MB03DZ( A, LDA, B, LDB, CO1, SI1, CO2, SI2 )
C     .. Scalar Arguments ..
      INTEGER            LDA, LDB
      DOUBLE PRECISION   CO1, CO2
      COMPLEX*16         SI1, SI2
C     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * )
Arguments
Input/Output Parameters
  A       (input) COMPLEX*16 array, dimension (LDA, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix A of the pencil.
          The (2,1) entry is not referenced.
  LDA     INTEGER
          The leading dimension of the array A.  LDA >= 2.
  B       (input) COMPLEX*16 array, dimension (LDB, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix B of the pencil.
          The (2,1) entry is not referenced.
  LDB     INTEGER
          The leading dimension of the array B.  LDB >= 2.
  CO1     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q1.
  SI1     (output) COMPLEX*16
          The upper right element of the unitary matrix Q1.
  CO2     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q2.
  SI2     (output) COMPLEX*16
          The upper right element of the unitary matrix Q2.
Method
The algorithm uses unitary transformations as described on page 42 in [1].References
  [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
      Numerical Computation of Deflating Subspaces of Embedded
      Hamiltonian Pencils.
      Tech. Rep. SFB393/99-15, Technical University Chemnitz,
      Germany, June 1999.
Numerical Aspects
The algorithm is numerically backward stable.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None